8,544 research outputs found

    The Third Way of Thermal-Electric Conversion beyond Seebeck and Pyroelectric Effects

    Full text link
    Thermal-electric conversion is crucial for smart energy control and harvesting, such as thermal sensing and waste heat recovering. So far, people are aware of only two ways of direct thermal-electric conversion, Seebeck and pyroelectric effects, each with distinct working conditions and limitations. Here, we report the third way of thermal-electric conversion beyond Seebeck and pyroelectric effects. In contrast to Seebeck effect that requires spatial temperature difference, the-third-way converts the time-dependent ambient temperature fluctuation into electricity, similar to the behavior of pyroelectricity. However, the-third-way is also distinct from pyroelectric effect in the sense that it does not require polar materials but applies to general conducting systems. We demonstrate that the-third-way results from the temperature-fluctuation-induced dynamical charge redistribution. It is a consequence of the fundamental nonequilibrium thermodynamics and has a deep connection to the topological phase in quantum mechanics. The findings expand our knowledge and provide new means of thermal-electric energy harvesting.Comment: 4 pages, 3 figure

    Effective potential calculation of the MSSM lightest CP-even Higgs boson mass

    Get PDF
    I summarize results of two-loop effective potential calculations of the lightest CP-even Higgs boson mass in the minimal supersymmetric standard model.Comment: 4 pages, 1 figur

    Thermodynamic stability of small-world oscillator networks: A case study of proteins

    Full text link
    We study vibrational thermodynamic stability of small-world oscillator networks, by relating the average mean-square displacement SS of oscillators to the eigenvalue spectrum of the Laplacian matrix of networks. We show that the cross-links suppress SS effectively and there exist two phases on the small-world networks: 1) an unstable phase: when p1/Np\ll1/N, SNS\sim N; 2) a stable phase: when p1/Np\gg1/N, Sp1S\sim p^{-1}, \emph{i.e.}, S/NEcr1S/N\sim E_{cr}^{-1}. Here, pp is the parameter of small-world, NN is the number of oscillators, and Ecr=pNE_{cr}=pN is the number of cross-links. The results are exemplified by various real protein structures that follow the same scaling behavior S/NEcr1S/N\sim E_{cr}^{-1} of the stable phase. We also show that it is the "small-world" property that plays the key role in the thermodynamic stability and is responsible for the universal scaling S/NEcr1S/N\sim E_{cr}^{-1}, regardless of the model details.Comment: 7 pages, 5 figures, accepted by Physical Review

    On Holographic Insulators and Supersolids

    Full text link
    We obtain holographic realizations for systems that have strong similarities to Mott insulators and supersolids, after examining the ground states of Einstein-Maxwell-scalar systems. The real part of the AC conductivity has a hard gap and a discrete spectrum only. We add momentum dissipation to resolve the delta function in the conductivity due to translational invariance. We develop tools to directly calculate the Drude weight for a large class of solutions and to support our claims. Numerical RG flows are also constructed to verify that such saddle points are IR fixed points of asymptotically AdS_4 geometries.Comment: 52 pages, jheppub, 15 figures; v2: minor corrections, references adde
    corecore